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We consider the space of multivariate polynomials in B-form and give an explicit
representation of its dual space. Using this space, the B-form of a monomial can be
easily obtained. We also derive a simple algorithm to convert a polynomial from its
Taylor expansion to its B-form. Each basis element of the dual space is bounded,
and we give explicit upper bounds. These upper bounds can be used to improve
some known estimates by giving explicit constants.  © 1991 Academic Press, Inc.

Polynomials in B-form, ie., polynomials in Bernstein, Bézier, or de
Casteljau representation, were originally used in car body design. Later,
this form for polynomials was widely studied in computer aided geometry
design and became an important tool for representation and compuiation
of polynomial and spline curves and surfaces, see [2, 10, 11]. Recently, this
important tool has been adopted and devcloped as a powerful tool in
multivariate spline approximation, see, e.g., [4, 6] The theoretical and
practical aspects of the study of polynomials in B-form can be found in
[3,9,127]. Many basic properties of the B-form have been studied. Readers
are referred to the references mentioned above.

One of the important subjects on the B-form which is neglected in the
above references is the dual space of polynomials in B-form. In the
univariate setting this topic was considered in [ 1]. In the multivariate case,
the subject has been studied only briefly in [137. In fact, the formulation
of a dual basis in [13] for the special bivariate case can essentially be
found in [7]. Tt is our primary concern in this paper to cxtend the study
of dual functionals to the multivariate setting. We will study the linear
functionals L, defined on P,, the space of polynomials of total degree <#
in s variables, satisfying

1, a=y;
B =5 = V = || = .
L,B,=0, {o, a7y, for] = |7
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20 MING-JUN LAI

where {B,, |y| =n} denotes a basis of P, (the precise definition will be
given below).

In the following, we will give an explicit formulation of dual functionals
satisfying this condition which will include the dual functional basis in
[13] as a special case. With the dual functionals, we are able to express
monomials in B-form and convert polynomials from its Taylor expansion
to its B-form. We will explore the connection of these dual functionals to
some of the basic properties of the B-form. These dual functionals are
bounded on P,. This fact will be used to improve some known estimates
by specifying explicit constants.

Let us first briefly introduce the B-form for polynomials.

Denote by v° .., v® the vertices of an s-simplex T=<{v% ., v')=
{x=35_oAv:2_y4;,=1, 20} =R°. Here, an s-simplex is the convex
hull of its vertices with positive volume. Setting
B — IO!I ! o s+ 1

H(A)=—4% VaeZ’’",
o!
we know that {B,(4), || =n} forms a basis of ,,, where || =3;_, «; and
al =ay!---o,! as usual. Hence, any p,€ P, can be expressed in the form

PA(X)= ) c.B,(4)
faf =mn
which is called the polynomial in B-form (with respect to 7).
Now we need some notation and definitions in order to introduce the
dual functionals.

Define D, the derivative in the direction {v’, v/}, by
t i g}y —
D,.jf(x):limf(x+ (v tV N—/x)
t—>0

Consequently, D= D% 'D, for k>2. Also,

Df=DB..-Dfy DI, DE VpeZ:,.
Similarly, denote by 4, the difference operator
A,-jca=ca+e.-—ca+ej, VOCEZ{:I,

where ¢, ¢/ are the standard unit vectors in R°*! and 0<i, j <s. We also
denote
Ab=Aly-- A% A% - AL
It is known that
Dyp(x)=n Y  Ayc,B(4).

lal=n—1



DUAL FUNCTIONALS OF POLYNOMIALS 21
(Cf, eg., [9].) Thus,

Dip,(x)= APe B (A).

n!
(=[B!, L

=n—|p|

An application of this differentiation formula gives the following lemma.

LemMa 1. For any p,eP,, and any integer [ >0,

Y Pu(xs) B(A)EP,,

fx| =n+1
where x,= (1/|a]) X3 _,a,v, Vel =n+1
Proof. For any f§ such that |f| > n,

Dé( ¥ pn<xa>Bau)) D)y g x0) B

lal =7+ 1 (n+1—1BDY 2.5

But 45 p,{(x,) =0 Va, since p, is a polynomial of total degree <n. Hence,
(T px)BAD)=0  VIpI>n
la|=n+1
This completes the proof.

Let A" '={aeZ° ' |a|=n}. A subset M =Z° is called a lower set if
it has the property that fe M implies y e M for any y < §.
We say that M, .., M, Z°, induce a partition of 43" " if they satisfy:

(i) AIM;nA7M;=J, i+ j, and
(i) UioodiM;=4;""
Here, A7 is the extension operator defined by
A?ﬁ=(ﬁ1>"-aﬁiflsn_Iﬁ|’ﬁi+19-~’ﬁ3)s Vﬁezi:

i=0,1,.,s
Recall the following inversion formula. Let M < Z°_ be a lower set, and

fla)=Y (Z)(—l)'ﬂg(y) Voe M.

7sa

Then

gy) =73 <Z>(—1)’“'f(a) Vye M.
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Here and throughout, we assume that M, ..,
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M, c7° are lower sets

and induce a partition of A5* . Define the linear functional L g bY

for fe M,, i=0, ..,

Logf= 2

y<p

( ) nI!VI)!

s. Then we claim that

{Lyaed)™ '} i={Lyy: Be M, i=0, ..

Dif(v)

.5}

is a dual functional basis of P, in B-form. That is,

THEOREM 1.

Suppose that My, ..., M, Z°,

a partition of A3*'. Then for any o, ye A5,

where

L,B,=36

ays

is the Kronecker’s delta.

are all lower sets and induce

The primitive version of these dual functionals can be found in [8]
where it was applied to solve interpolation problems. With those dual
functionals, we readily have the following

COROLLARY. Let p,=

Proof of Theorem 1.

ye A5+ " Then

Dlal=n CaBy. Then

c:szapna

Fix 0<i<s.

D!B,(v)=D! ¥ ¢*B

Vo ASt,

Let a=4}v, ve M;, and ;=90

Irl=n
n! Y 4%cB(2)
lc“
~(n—1BD! MRy R v
~G A e
n!

)

“(n— 1) .2,

(f) (—W=wiea,

ay?
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o]
(%]

Hence,

Laug= 3 () =P DB g )

B<p ﬁ

A Eﬂ () vre

LA;«“BA;z‘;O, VveM; and VueM,

It follows that

where j # i, since ¢%, —c =0.If j=i, welet f(B) =3, () (-1 ¢ A,},
Be M, Then by thc mversmn formula,

L= T (5) 00 10 =c =3,

Bsu

Hence, we have established the theorem.

Examrie 1. Let s=2 and n=S5. M,, M, and M, can be chosen
as follows: My=M,={(0,0), (1,0), (0,1), (2,0), (1,1), (0.2)} and
M,=M,u {(2, 1), (1,2), (2.2)}. Clearly, they are lower sets and induce a
partition of 43.

Remark. We may use these dual functionals to derive the de Casteljau’s
Algorithm which is a very popular way to evaluate any polynomial
Pa(X) =214 =n Co Bo(A) in computer aided geometric design. (See other
derivations of de Casteljau’s algorithm in [1-3, 9-111.} To evaluate p,, at
x=3%_, ;v with 32_, 4;=1, we may write the B-form for p, with respect
to T'={x,v,v, ., ¥), as pAy)=3 . -rb.Bu) Here, we have
assumed that A,>0 without loss of generality. Let f,=(n0,..,0)eZ".
Then

Pu(X)=bgp =L 45 Pu

) (’i) e by i)

:é()(l)(nwz (éil LD, h_vs>i‘a‘znc23aivx
:E:O(J(”;‘)? (n’i’t)! (Az e ) Oy On—1)
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B ()(E ) e

where E; denotes the shift operator defined by
E.co=cCy ., aeZ’, i=0,..,s.

Hence, for |B|=n, set Pg(A)=c4. Then for |B|=n—1, n=2,.,0,
compute

Pﬂ(l)= Z /liPﬁ+ei(/‘L)§
i=0

to obtain Py(4)=( 0 4:E;)" €, 0y= Pn(x). This is the so-called de
Casteljau’s algorithm

Similarly, any b, of p, with respect to 7' can be obtained as well. For
any « with |a| =n, let feZ* such that o =A}B. Then

_ !
bo=Lygp.= ). <ﬂ>(—n—n|!y—l)'l)§pn(vs)

y<p N\

( > |y|) vas)vl (Dvl_vs)n"'(Dv”l—VS)vypn(vs)
y<pB

50 (5 )

X (Dyi_y)? - (Dyeei_y)* Y ¢, B,

Inl=n

s—1 71
=2, ( ><Z /1,-A,s> AT AT €0, 0m—1p)
=0

y<§

s—1 71
Z ( )(Z lejs) AK"‘AzimE:“MC(o,..,,O)
=0

y<p

v
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s—1 B
=< Y X'jAjs+Es> (A +EY?- (4, ,+E)" E';ch(ow,m

j=0

s 5
(Z 'q'J'EJ) Efz"'Efqu?_ImC(o, "t 0)
=0

=< D A;EJ Co a0 =Py aotlA)
F

/~0
because

s

Poz—-czoeo(‘l): Z A’jPor~—zxgeB+ef(/1)

i=0

5 5

° z ;“ichv-ageO%rej—!- el

=0 i=0 R —

og

I
i
™~
>

s s
A 1
- Z A’j"' Z AiCoaped el oo +ef
j=0 i=0 g

xp

= Z )"] Z A‘ij'..Eicot—-fxon

Therefore, the other b,’s of p, with respect to 7' are byproducts of using
de Casteljau’s algorithm to find p,(x) (=b(,0, o)

Remark on the B-Net Subdivision Algorithm. Suppose that {¢,}, _, are
the given B-coefficients of a polynomial p, with respect to 7. Here s=2.
We split T into two subtriangles by connecting v® and the midpoint of v*
and v2 Then the B-coefficients of p, with respect to each of these two sub-
triangles can be found simultaneously by applying de Casteljau’s algorithm
at the midpoint (v' +v?)/2 as derived above. Suppose now that we split
each of the two subtriangles into two by connecting the midpoint
(v! +v?)/2 to the midpoints of its opposite edges, and so on. {Cf. [9].) This
procedure is called B-net subdivision. It is worth noticing that in this
particular example the multiplications of an application of de Casteljau’s
algorithm are just binary shifts. Hence the B-net subdivision algorithm is
very efficient.
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By using the dual functionals {L,: |x| =n}, the polynomial interpolating
given data {f;;: feM,,i=0, .., s} in the sense that

Dip(fi¥)=fg»  BeM, i=0,.,s
can be easily found.

THEOREM 2. Suppose that M, ..., M S Z°, are all lower sets and induce
a partition of A", Then for any given data {fiz: feM,, i=0, .., s}, the
interpolating polynomial is

palfix)= ) L,fB.(2),
le]=n
where {L,f:|al=n} :={Lpsf:feM;i=0,..,5} and each Lsf is
defined by

Lygf= ). < ) M) fos  BeM, i=0,.,5

y<p
In particular, if {f;z=D!f(v)): Be M,,i=0, .., s}, then
PAfsX)= ) L, fB(A)

lal =n

Proof. Write p,(f, X)=2X, = ¢, B,(4) as the interpolation polynomial.
Then ¢, can be obtained by using the dual functionals. That is,

covmm 3 () o

y<p v

=) < ) M) fign  VBeM, i=0,..s

y<p

since p,(f, x) interpolates the given data. Hence, we have established the
theorem.

COROLLARY. For each ¢,(x)=Xx% |a| <n, its B-form is given by

$u(x)= Y. L,4.B,(4).

Iyl =n
Algorithm. To convert a given Taylor expansion of p, (p, in power
form) into its B-form, we only need to compute its directional derivatives
Dip,(v), ye M;, i=0, .., 5, and combine them in the following way

Cap= X (ﬁ )("_—”')’D,an(vf), VfeM,

y<p \7 n!
for i=0, .., s. This gives all the B-coefficients ¢, of p,(X)=3, -, ¢, B,(4).
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Alternatively, we may first find the B-coefficients L,¢,, |y|=n of
$.(x)=x* as above for each |x| <n. Then, for any polynomial p (x)=
2lai<n @, X%, the B-form for p, is

> (Z aaLygﬁ“) B,(4).
[yl=n Naf<n

s+1 s
yeZy aeZ’

It is clear that these dual functionals are linear. In fact, they are bounded
on P,:

THEOREM 3. For integers n and s= 1, there exists a constant C(n, s)
dependent on n and s such that for any polynomial p (X)=3", -, ¢, B,

L, p,| <C(n,5) Pl cos [yl =n,
where

f’l! +1
C(n,S)=m(1+2)[ /( )],

and “pn“oo :maxxeT “pn(x)“

Proof. Let us consider s=1 first. Then we can use the well-known
Markov’s inequality to get

’Dlﬁpn(vl)!gzﬁnz(n_l)z(n_ﬁ+1)2 ”anoo’ BS”, Z:Ou 1.
Hence, let M= {0, 1, .., [(n—1)/2]} and M= {0, .., [#/2]}. Then

3 (7)ot )

B=0

Lo (7 (n—=p)! ;
<ﬂ>_:0 <ﬂ> — |D?p,(v))|

i ( > -ﬁ) ((ni!ﬁ)!fupnn@
B 132::0 (;) (n /3)1 22 pall o
<"[n’;T!]! ﬂéo (;) 22 11Pall o

n!
=m( +2) 1 pull

|CA?y| = |LA:1ypnI =

n!
=TTl “Pn”w\[/21v3[”/21||p,,nw, i=0, 1.

Therefore, the result is true for the case s=1.
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Next, consider s=2. Let My={(i, j): i+ j<[2n/3]}. For each fe M,,
we may apply Markov’s inequality twice as follows:

DG pu(v*)] = |DGH(DGE pA(v))

<4/31n (n—ﬁ1+1)2 max |Dg§pn(x)|
xe [v0,(v0 +vl)/2]

<4P e (n= B D2 DD, e[V, (V2]
AP (= By 1P 4500 — B (1= By — B+ 1)?

X max [pa(x)]
xe[&E+ (P —vhInT

=4P P2 (= (B, 4 Bl + 12 1Pl s

where T= (v, v!, v*>. Hence,

lean,| =1L g, pal < 3 (ﬁ) (n— lﬁl) D2 p.(v°)|

B=<vy

_Ey() i 4”“(( n(ﬁl)') 17l
_,Ey() o el

= e Z G?) ¢

n! n!

[ Il

(n_ [27737)] (L+4)" palle < [n/31]
Similarly, we will have estimates for |c | and |c4,|. Hence, Theorem 3 is
valid for s=2.

For the general case s>3, we may apply Markov’s inequality s times

similar to the case s=2 and get C(n, s) = (n!/[n/(s+ 1)]!)(1 4 2%)bs#/s+ D]
Thus, the proof is complete.

5P poll o -

Remark. The existence of a constant C satisfying
le)l =1L, pl SClpall o, I¥I=n, Vp,eP,

follows from the fact that P, is finite-dimensional. Here, we give an explicit
upper bound for C.

CoROLLARY 1. For any polynomial 3, -, ¢, B, €P,,

Y caBu(d)

lel =n

C(n, s)~! max |c,] <max
lot] =n xeT

< max |c¢,|.
la| =n
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Next, we consider a bound on splines similar to Corollary 1. We need to
introduce some more notation and definitions. Suppose that Q<R is a
region partitioned by simplices. Thus, Q=7_,,, where each ¢, is a
simplex. Let ¥'= {v', .., v"} be the set of all vertices of Q. Denote by

S(Q)={5eC"(Q):5|,eP,}

the usual multivariate spline space. For each i, let b;(x)e S)Q) be the
piecewise linear function satisfying b,(v/)=4,, j=1, .., N. Clearly,

N N
x= Y bi(x)V, Y b,=1 and 5,20, Vi
f==1 f=1
Set A (2)={aecZ7: lo|=d, <{v:e;#0)<¢ for somet,}. For each
e Ay (2) and A= (b,(X), ..., by(x)), we define
forl!

B4, Q)=" H (b:(x))*

where 0° := 1 the usual convention. Then each s & §7,(22) may be expressed
in the form

5(x) = Z ¢, B4, 2)
we A(2)

which is called the spline in B-form with respect to €. This form of
bivariate splines has been used successfully in [4].
We are now ready to state the following corollary,

COROLLARY 2. For each s(X)=3,. 1o CxB.(4 )e S5(Q),

C(d, s)™' max |c | <max [s(x)] < max ¢,
ae Ag(02) xeQ xe.4g(82)

Furthermore, if T= {e°, ..., e*) is the standard simplex in R®, then

G ,
i PaX)=n Y (Cayazd—Coyazed) Bo(A),

v [ee] ==t~ 1

for x={x,,.,x,)eTand j=1, .. s Thus,

(’3 i
] E;Pn sn ia%‘{}i{} [€ot and — Cop ated
7 © -
« 2n max |,
laf=n
<2nC(n, sy | Y ¢, B,
lof = n @

=2nC(n, s) | p.ll -

Therefore, we have proved the following theorem.
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THEOREM 4. Let T be the standard simplex. For each j, 1 < j<s,

<2nC(n, ) | pull -

A
5x]pn w

Remark. Obviously, the constant 2nC(n, s) is not the best one and
hence, the inequality in Theorem 4 is not the multivariate analog of the
well-known Markov’s inequality.

COROLLARY. For any s-simplex T and for each 1 < j<s,

0 i—1 i+ 1
ol,_ (v, v/ vt v

v
<2nC(n, ) vol . <v% .., v

1241 -

2

Proof. Since

k

0
Dypn=1Y, (Vk—VO)ja—ijn, k=1, ..5,

j=1
we may solve for d/0x;, j=1, .., s, by using Cramer’s rule and obtain

0 det[(v! =v°), . (W1 =VO), D, (W =¥, L, (v V)]
ax, P det[(v' —¥0), .. (V' —v9)] ‘

where D is a column vector (Dg; p,, ..., Doy p,,)". After a simple expansion
of the determinant, we obtain

(Zi:lDOk(—l)k P (v —¥°), ..., (v/ 1 —=¥0), )

o (v =¥, ., (v =V
ax, P SIVOLAYS, o VS ’

where P {(v! —=v%), ..., (v/ 1 —v%), (v/*1—v°), .., (v*—v°)) denotes the
projection of {(v'—v%), ., (v/71—v%), (v/*!1 —+%), . (v*—v°))> onto the
coordinate plane which is perpendicular to the kth axis. Hence,

((s— ! vol,_ {(v' —=vO), .., (v/ 71 —v°), )
<

p, vy, L (v —=v° s
:31;_1- = s!volf(vo, — v’)> ( 2 ,Z‘l Do al-
This completes the proof.
It is already known that
2
II:]li)i an(Xa)“‘CaI <K(d1am T)Z [I;}iXZ m Pn ooa
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where x, = (1/n) 35_, a,¥', V |a] =n, and diam T denotes the diameter of T
(cf, e.g.. [9]). This estimate is crucial to give an a priori estimate before
applying the B-nct subdivision algorithm. We are now able to specify the
K in the following theorem.

THEOREM 5. For any n, s and polynomial p,(X) =214, Ca B, (L) EP,,

C(n,
Imax lpn(xa)—crxl < (2 S)
otf = n

2

sS(E(T))? ma(

4

axﬂ pn

where C{n, s} is defined in Theorem 3 and E(T) denotes the longest lengih of
edges of T, i.e, E(T) :=max, [V —v/||,.

Proof. 1t is known that for any ¢e P,

(x)= Y ¢(x,) B.(A).

{xj==n
{Refer to [3, 97].) For any function f,

S = fX)=Dy_ [(x)+3D;_, f(x+ &y —x)),
for some £e [0, 17. Thus, we get

2 Sx)B(A)— f(X)=* Y DI fx+E(x,~x)) B.(4)

e} = ]oei R

Clearly,

D2 fix+E(x,— X))l < (z f(xawxw) max

= 181=2

Hence,

’f(X)* S f(x.) Bu(d)

o) =n

D Z (x, —x)]? B(A) max

(el =n i=1

> =3

1=

ox

N!w

i

b

f: o (v = x) (=), B.(3) ma

).

g (v —x); (v —x), > oo B (Z)maxva ﬁf”

Jj=1 k=0 jal —n t oo

ioc]n'i'

Il

[ 2R

1
712

640/67/1-3
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Since

Z o0 B (A) =

lel=n

.ﬂm—g;ﬂaumm
(i&wt V(2w —x)

82
!

2

s

n(n—1) A4, ik
nn—1)A2+ni;, i=k,

e 9]

X | max
1Bl =2

oo

62

max P f

fe o)

Z 2, (v —x)- (v'—x)

i=0

s
<——max
N x

2

0
<—E(T)2 max 0xf’f

[B1=2

=}

Therefore, by Theorem 3
Z (pn(xot) - sz) Boz

x| =n

Z pn(xzx) Ba_pn

lal =n

|pn(xo¢) - Coci < C(”’ S)

o0

[e o}

=C(n, s)

2
an

oo

<an§EwV$g

The proof is complete.
Next, we would like to know how fast the B-nets arising from successive

degree raising approximate the polynomial surface. Recall that for any
polynomial p, in B-form, it can be rewritten as a polynomial of higher

degree, i.c.,
p.(x)= Y ¢ B(A)= ) Rlc,B,(4)
la| =n le|=n+1
where
o n+
Rle, = .
=z a()(")

(Cf. [3,9,12])
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It was proved in [10] and in many other papers that

max |p,,(xa) Rlc,| =0, - m.

lal =n+

Here, we prove the following theorem.

THEOREM 6. Let T be the standard simplex in R°. For any p,eP,, for
! sufficiently large,

; 2sn*C(n, s)* §
o] maX ipn(xzx) R 1 ( +[) 1“‘28’? C(n 3)2/(??+!} I;pnl?w

Progf. Define the operator B, on P, by
kan(x Z pn m)B (’]) Vpnepn'
| =k

By Lemma 1, we know that B, p, < P, when & > 5. As shown in the proof
of Theorem 5,

2
B.p,— g max "
H kPn pn”oo 2k Bl=2 8X§ ]

< 2sn*Cln, sV
k

oo

2.l

by using Theorem 4.
When k is large enough,

2sn*C(n, 5)?

“kan—pn”oo< Hpn“oo<”pn“co’ Vpnepn'

Thus, B, is invertible on P, and hence,

max |R'c,— p,(x,)]

foef == a1

::lfnax (B, pa) (X)) — pa(X,)]

~*{:’4“Br:+1pn pn”oo\“B;H-I"I”oo Hpn”oo
=+ B,y ;= D1 1l o 1Pa) o

NBn+1 Il o 1 2sn*C(n, 5)*
—Buri—1ll., Ip "”°°\( + 0 1=2sn2C(n, $)}/(n+1)

2all o -

This completes the proof.
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COROLLARY. If T is an arbitrary s-simplex in R’, then for any p,eP,,

max | p(x.)— Rle.| < 1 2sn*C(n, 5)* h(T)?
ol DX NS 1T = 2n2C(m, 5)¥(n + 1) (T)

where

212l

h(T)= E(T) max {VOI“"<VU’ S - > Al >}

0<is<s Vol {v°,

Alternatively, we may use these dual linear functionals to give the
following estimate in terms of the B-coefficients of p,(x). This avoids using
the (unknown) multivariatec version of well-known Markov’s inequality
and the multivariate version of Bernstein polynomial convergence theorem.

THEOREM 7. For any p, € P, with B-coefficients {cp}ip=n, for
lal=n+1,

nn—1)
+1

1
+ 0<m>, as |- +o0.

Proof. Let ¢, be a mapping defined by

|pn(x1) - R/C:z| <

(1+28)" {cphipr=nl

Codt = (&y, ..., 0,), for o={(%,,%,..,2,)€Z" "

We first expand p,(x,) at v° to obtain

/=0l'

n 1 s o J
=% 5| 200 i)

oot in+!

z I (C()a)J 0
= = Dgpa(v’)

/;0||Z_],!(n+1)1 ’

0 % 0

=pn(v ) DiOpn(v )

Z < Yo+ Y ) ) - Djy p(v°)

Iyl =J I =7 n+l)
,<¢()a iyi> %

_ 0

- + Z lol’n )

l—l

! (Cox)' nt < 1 )
— ——— Aic 2 +O0| —=)
+I§2 |-,|Z-_j7! (n+1) (n—j)! o€ peot (n+ 1)

7S cox
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Then we use the dual functional formula to get

Re= ¥ (9L by 00)

By (n+ D!

5 @,
= pn{vo}_é_ Z mDiOpn(vi}}

»n l )
- Oa) ﬂ___]m_]_)/p"(vo)
122 MZJ ( i (n+1)’ °
< opo

~pn(vg}'§' Z mD:OPﬁ(Y )

+§ 1 (epa)t (m+i~—~j) n!

T opis YHeqe =) (r+ DD (n— )

S cox

AGC i -

e, = L[ (o) (a4i=j) (o)t |
pn(xa)"‘Rca—jgz ,yé,iyl[(”+l)j (?I'i—[)? (coa~'}’)!J

7= o

ni 1 .
X gy Hoce f”"w((nw)z}'

Since
el—jy 1 1
(n+D (DT (U ~K/(n+ 1))
{ =l ok {
“mry L (4557t ({ 1”?3”))
! i
=(n+1)f( N Z ,g_,g (in?&?F))
1 (J—1)Jj 1 10
“eiyt 2T +z)*+1+0((n+[)f+f)’
(m+1=D! (ee)) 1 {coa)!
(n+ D (cox—7) " (n+1) (co—y)!
Jj—1) 1 {cooc}! {1
T e e i O i(n+z)2)'

Also, since
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(cox)! y s 1 y;,—1
(o)1~ (0% ,“1(17,)'“(1‘ % )

o (1-3 5 £4 )

im1 k=1%

= (eorp ~ ¥ P @ay <4 0@+ 1772),

i=1
(o) (1+1=))! (con)!
(n+0)Y  (m+D (coa—y)!

_ leow)’ _[(coa)y +j(j—1) (coa)”
(r+1yY [ (n+1) 2 (n+lytt

l Vi(yi*l)(coa)yaei 1
*El 2 (n+1y +0((n+1)2)}

(co)”  (m+I—j)! (co2)! (
(n+0)7  (m+D! (coa—7)!

2 V(Vz 1) 1 jj—1) 1 1
<2 Al 2 n+1+0<(n+1)2)

L /i "f J—=1 1
<n+z< 2 T2 )*0((n+1)2)
_JjU-=1 1
 n+l +0((n+l)2>'
Hence,

|pn(xtx)_R1 ncl

“ 1j(j—1) na! (
n— € +O
fzz pio vt o+l (n— J)'i o el

Thus,

//\

(ni1)2>

_ 1 1 j! n! 1
Tl G 2)(2 )(n “ii 2 Mestimanlo+ <<n+l)2

[7l J

1
+
= Y o O s Vesbnnl = +0 (53 77)
Tn+l5 (-2)! (n——j)! PI1AI =rlleo (n+1)?

n 2

1
= ( 1)(1+2s)” 2(25)* I{cp}ipr=nllco + O ((n+1)2>

n(n—l) n 1
w7 (L2 Heghim=nllo+ 0<(n+l)2>'

This completes the proof.
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