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On Dual Functionals of Polynomials in B-Form
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We consider the space of multivariate polynomials in B-form and give an explicit
representation of its dual space. Using this space, the B-form of a monomial can be
easily obtained. We also derive a simple algorithm to convert a polynomial from its
Taylor expansion to its B-form. Each basis element of the dual space is bounded,
and we give explicit upper bounds. These upper bounds can be used to improve
some known estimates by giving explicit constants. © 1991 Academic Press, Inc.

Polynomials in B-form, i.e., polynomials in Bernstein, Bezier, or de
Casteljau representation, were originally used in car body design. Later,
this form for polynomials was widely studied in computer aided geometry
design and became an important tool for representation and computation
of polynomial and spline curves and surfaces, see [2, 10, 11]. Recently, this
important tool has been adoptcd and developed as a powerful tool in
multivariate spline approximation, see, e.g., [4,6]. The theoretical and
practical aspects of the study of polynomials in B-form can be found in
[3,9, 12]. Many basic properties of the B-form have been studied. Readers
are referred to the references mentioned above.

One of the important subjects on the B-form which is neglected in the
above references is the dual space of polynomials in B-form. In the
univariate setting this topic was considered in [1]. In the multivariate case,
the subject has been studied only briefly in [13]. In fact, the formulation
of a dual basis in [13] for the special bivariate case can essentially be
found in [7]. It is our primary conccrn in this papcr to cxtend thc study
of dual functionals to the multivariate setting. We will study the linear
functionals La defined on IP' n' the space of polynomials of total degree ~ n
in s variables, satisfying

a=y;

a =1= 1',
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Vial = 11'1 =n,
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20 MING-JUN LAI

where {By, IYI= n} denotes a basis of IP n (the precise definition will be
given below).

In the following, we will give an explicit formulation of dual functionals
satisfying this condition which will include the dual functional basis in
[13] as a special case. With the dual functionals, we are able to express
monomials in B-form and convert polynomials from its Taylor expansion
to its B-form. We will explore the connection of these dual functionals to
some of the basic properties of the B-form. These dual functionals are
bounded on IP no This fact will be used to improve some known estimates
by specifying explicit constants.

Let us first briefly introduce the B-form for polynomials.
Denote by va, ..., V

S the vertices of an s-simplex T = <va, ..., V
S

) =
{x = L::~o AiVi: L::~o Ai = 1, Ai):O} <;; IW. Here, an s-simplex is the convex
hull of its vertices with positive volume. Setting

B (A)=~A~
~ "a.

we know that {B~(A), lal = n} forms a basis of lPn' where lal = L::~o ai and
a! = ao! ... as! as usual. Hence, any Pn E IPn can be expressed in the form

Pn(x) = I C~B~(A)
I~I ~n

which is called the polynomial in B-form (with respect to T).
Now we need some notation and definitions in order to introduce the

dual functionals.
Define Dij' the derivative in the direction <Vi, vi), by

Dijf(x) = lim f(x + t(v
i
- Vi)) - f(x) .

t~O t

Consequently, Dt = Dt - 1D ij for k): 2. Also,

Df3=Df31 ... Df3, Df3Hl ... Df3,
i ;0 i,i-1 i,i+ 1 is'

Similarly, denote by L1 ij the difference operator

where ei
, ei are the standard unit vectors in ~S + 1 and 0 ~ i, j ~ s. We also

denote
L1 f3 = L1 f31 ... L1 f3i L1 f3H 1 ••• L1 f3s

1 ,0 1,1-1 1,1+ 1 IS·

It is known that

DijPn(x)=n I L1ijC~B~(A).
I~I ~n-l
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An application of this differentiation formula gives the following lemma.

LEMMA 1. For any Pn E lPn, and any integer I> 0,

L Pn(X~)B,,(A)EIf\,
I~I ~n+l

where XC( = (i/lal) L:~o a/vi, Vial = n + [.

Proof For any 13 such that 1131 > n,

But LlgPn(x~)=O Va, since Pn is a polynomial of total degree ~n. Hence,

Dg ( L Pn(x,,) Ba(A)) =°
lal ~n+l

VlfJl>n.

This completes the proof.

Let A~+ 1 = {a E zs++ 1: lal = n}. A subset Me Zs+ is called a lower set if
it has the property that 13 E M implies YE M for any y~ 13.

We say that M o, ..., M s C Zs+ induce a partition of A~+ 1 if they satisfy:

(i) A7MJ1A;Mj=0, i=/-j, and

(ii) U:~oA7Mi=A~+I.

Here, A7is the extension operator defined by

A 713 = (131, ..., 13i-1, n -1131, 13i+ 1, ... , 13s),

i=O, 1,..., s.
Recall the following inversion formula. Let M ~ Zs+ be a lower set, and

Then

f(a) = Y~a G) (_1)171 g(y) VaEM.

VYEM.
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Here and throughout, we assume that M o, ..., M sC Zs+ are lower sets
and induce a partition of A~+ 1. Define the linear functional L A7/3 by

for f3 E M i , i = 0, ..., s. Then we claim that

is a dual functional basis of IP n in B-form. That is,

THEOREM 1. Suppose that M o, ..., M s £;; Zs+ are all lower sets and induce
a partition of A~+ 1. Then for any iX, y E A~+ 1,

where

is the Kronecker's delta.

The primitive version of these dual functionals can be found in [8]
where it was applied to solve interpolation problems. With those dual
functionals, we readily have the following

COROLLARY. Let Pn = LI"'I ~n c",B",. Then

Proof of Theorem 1. Fix 0::;:;; i::;:;; s. Let iX = Aiv, v E Mi , and c~ = b",y,
y E A~+ 1. Then
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Hence,

It follows that

LAn"BA"v=O,
,r J

where j ¥ i, since c~7Y =ct= 0. If j= i, we let f(P) = Ly,,;/i (1)1/1

PE Mi' Then by the inversion formula,

Hence, we have established the theorem.

EXAMPLE 1. Let s=2 and n 5. M o, M I , and M 2 can be chosen
as follows: Mo=MI={(O,O), (1,0), (0,1), (2,0), (1,1), (0.2)} and
M 2 = M 0 u {(2, 1), (1,2), (2.2)}. Clearly, they are lower sets and induce a
partition of A ~.

Remark. We may use these dual functionals to derive the de Caste1jau's
Algorithm which is a very popular way to evaluate any polynomial
Pn(x) = LI"I =11 c"B,,(},) in computer aided geometric design. (See other
derivations of de Casteljau's algorithm in [1-3, 9-11].) To evaluate Pn at
x 2::=0 AiV

i with 2::=0 Ai = 1, we may write the B-form for PII with respect
to T'=<x,vl,v2

, ...,vs
), as Pn(Y)=2:I"I=nb"B,,(tt). Here, we have

assumed that )'0>°without loss of generality. Let Po = (n, 0, .,., 0) E ZS+,

Then

Pn(X) = bA;Po= LA;PoPn

= '\' (Po) (n -Ill )! DYI ( $)
L. 0 n! x-v'P" V

y,,; flo)l •

II (n) (n - i)! (S-1 )i i
= L ' --,- .L J'jD,} .."s L c"B" I .

1=0 I n. j=O l"l~n"

II (n) (n _ i)! n! (S- I. )i
= L ' --,--(_ ')' L j'pJ js c(O, ..,O,n-n

i=O In. n I, j=o
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where E i denotes the shift operator defined by

i=O, ..., s.

Hence, for 1f3I=n, set Pp(A)=Cp. Then for 1f3I=n-l, n=2, ...,O,
compute

S

Pp(A) = L AiPp+AA);
i~O

to obtain Po(A)=(L:~oAiEJnc(o,...,O)=Pn(x). This is the so-called de
Casteljau's algorithm.

Similarly, any b~ of Pn with respect to T' can be obtained as well. For
any 0: with 10:1 = n, let f3 E lL s+ such that 0: = A;f3. Then
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because

s

P,,- aoeO(A) = L AjP,,-aoeo+eA A )
j=o

s s

= ... = L Aj '" L )'iPa-aoeo+ ej + ... +ei

j=o ;~o ~

~ ao
ao

s s

== L Aj ... L AiCa-aoeo+e/+ _0. +ei

j=o ;=0 ~

~ ao
ao

s

= L )'j"" L A;Ej ... E;ca_aoeo
j~O ;=0

25

Therefore, the other b,,'s of Pn with respect to T' are byproducts of using
de Casteljau's algorithm to find Pn(x) (=b(n,O, ..., 0))'

Remark on the B-Net Subdivision Algorithm. Suppose that {c"'}lal=n are
the given B-coefficients of a polynomial Pn with respect to T. Here s = 2,
We split T into two subtriangles by connecting '1'0 and the midpoint of y l

and '1'2. Then the B-coefficients of Pn with respect to each of these two sub
triangles can be found simultaneously by applying de Casteljau's algorithm
at the midpoint ('1'1 + '1'2)/2 as derived above. Suppose now that we split
each of the two subtriangles into two by connecting the midpoint
('1'1 + '1'2)/2 to the midpoints of its opposite edges, and so on. (Cf. [9].) This
procedure is called B-net subdivision. It is worth noticing that in this
particular example the multiplications of an application of de Casteljau's
algorithm are just binary shifts. Hence the B-net subdivision algorithm is
very efficient.
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By using the dual functionals {L~: lal = n}, the polynomial interpolating
given data {liP: fJ E M i, i = 0, ..., s} in the sense that

P i - I' fJDiPn(f, V )-JiP' EMi, i=O, ..., s

can be easily found.

THEOREM 2. Suppose that M o, ..., M s ~ Z,,+- are all lower sets and induce
a partition of A~+ 1. Then for any given data {};p: fJ E M i, i = 0, ..., s}, the
interpolating polynomial is

Pn(f, x) = L L~fB~(Je),
I~I =n

where {L~f:lal=n}:={LA7pf:fJEMi,i=0, ...,s} and each L A7p f is
defined by

L n f= " (fJ) (n-I1'I)! +.A,P L... I J1Y'
y~P l' n.

{JEMi , i=O, ..., s

In particular, if {liP = D~f(vl fJ E M i, i = 0, ..., s}, then

Pn(f, x) = L L~fB~(Je).
I~I =n

Proof Write Pn(f, x) = LI"I ~n c~B~(Je) as the interpolation polynomial.
Then c~ can be obtained by using the dual functionals. That is,

cA7p=LA7pPn= L (fJ) (n- I/ I)! D~Pn(f, Vi)
y~P l' n.

I (fJ) (n - ~YI )! J.p, VfJ E M i , i = 0, ..., s
y~P Y n.

since Pn(f, x) interpolates the given data. Hence, we have established the
theorem.

COROLLARY. For each iP~(x) = x~, lal :::; n, its B-form is given by

iP~(X) = I LyiP"By(Je).
Iyl ~n

Algorithm. To convert a given Taylor expansion of Pn (Pn in power
form) into its B-form, we only need to compute its directional derivatives
D;Pn(vi), Y E M i, i = 0, ..., s, and combine them in the following way

n = " (fJ) (n-Iyl)! DY (i)cA,P L... ,iPn V ,
y~p y n.

for i = 0, ..., s. This gives all the B-coefficients Cox of Pn(x) = LI"I ~n c"B,,(Je).
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Alternatively, we may first find the B-coefficients LyrPa, Iyl =n of
rPa(x) = x" as above for each lal:( n. Then, for any polynomial Pn(x) =
LI"I ~ na"x", the B-form for Pn is

L (L a"LyrP") By(},).
Iyl ~n 1"1 ~n

y E l's++ 1 a E Zs+

It is clear that these dual functionals are linear. In fact, they are bounded
on IP n:

THEOREM 3. For integers nand s;:" 1, there exists a constant C(n, s)

dependent on nand s such that for any polynomial Pn(x) = LI"I ~n c"B",

Iyl =n,

where

n'C(n s)= . (1 + 2S) [snl(s + 1)]

'[nl(s+I)]! '

and IIPnl1 00 = maxXE T IIPn(x)ll·
Proof Let us consider s = 1 first. Then we can use the well-known

Markov's inequality to get

IDfPn(yi)1 :( 2Pn2(n - 1)2 ... (n - [3 + 1)2 IIPnll 00' f3:( n, i = 0, 1.

Hence, let M o= {a, 1, ..., [(n-l)/2J) and M 1 = {O, ..., [nI2]}. Then

ICA?yl = ILA?yPnl = Ipto (;) (n:t)! DfPn(vi)I
:(pto (;) (n:![3)! IDfPn(yi)1

y (y)(n-[3)! p( n! )2
:(p~o [3 n! 2 (n-[3)! ilPnlloo

_ y (Y) n! p
- p~o [3 (n-[3)!2 ilPnlloo

n! Y (Y)
:( [nI2]! p~o [3 2

P
IIPnii00

n!
= [nI2]! (l + 2)Y IIPnl1 00

__n_!_ y ~~ [nI2]
-[nI2]!31IPnII00""'[nI2]!3 IIPnlloo, i=O,l.

Therefore, the result is true for the case s = 1.
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Next, consider s=2. Let M o= {U,j): i+ j< [2n/3]}. For each f3EMo,
we may apply Markov's inequality twice as follows:

IDgPn(vO)1 = IDgl(Dg~Pn(vO))1

<4P1n2 ... (n-f31+1)2 max IDg~Pn(x)1
XE [vO,(vO+v1)/2]

< 4P1n2 (n - f31 + 1)2 IDg~Pn(OI, ~ E [VO, (VO + v1)/2]

<4P1n2 (n- f31 + If 4P2(n- f3d 2... (n- f31 - f32 + If
x max IPn(x)1

XE [~,~+(v2_vl)]n T

1 I I I " (Y) (n -1f31 )! I P (°)1cA3Y = LA'QyPn < L. f3 ' DoPn vp,,;;y n.

= L (Y) (n -I,m )! 41PI ( n! ,)2 IIPnl1 00

p,,;;y f3 n. (n-If3I).

_"(Y) n! IPI- /:~y f3 (n -1(31)! 4 IIPnlloo

_ n! " (Y) P
-(n_IYI)!IIPnlloo/;,y f3 4

& n! (1 4)IYI II II & n! 5[2n/3] II II
'""(n-[2n/3])! + Pn 00'""[n/3]! Pn 00'

Similarly, we will have estimates for IeA7 yl and IeA~yl. Hence, Theorem 3 is
valid for s = 2.

For the general case s): 3, we may apply Markov's inequality s times
similar to the case s = 2 and get C(n, s) = (n !/[n/(s + 1)]!)(1+ 2S

) [sn/(s + 1)]

Thus, the proof is complete.

Remark. The existence of a constant C satisfying

follows from the fact that IP n is finite-dimensional. Here, we give an explicit
upper bound for C.

COROLLARY 1. For any polynomial LI"'I ~n c",B", E lPn,

C(n, S)-l max 1e",1 <max I L C",B",(A)! < max Ic",l·
l"'l=n XET l"'l=n l"'l~n
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Next, we consider a bound on splines similar to Corollary 1. We need to
introduce some more notation and definitions. Suppose that Q £ IR;S is a
region partitioned by simplices. Thus, Q = Ui= fi' where each t i is a
simplex. Let V= {vI, ..., vN

} be the set of all vertices of D. Denote by

S~(Q)= {SECr(Q):s It;ElPd }

the usual multivariate spline space. For each i, let bi(x) E S?(Q) be the
piecewise linear function satisfying bJvj

) = oij' j = 1, ..., N. Clearly,
N N

X= L b,(x) Vi, L bi =1 and bi~O, Vi.
1=1 i=1

Set AAQ)={aEZ~: lal=d, <vj:aj¥O)£tj for somet i }. For each
(X E AAQ) and A= (bl(x), ..., bN(x)), we define

lal! N "tB"U·, Q) -f n (bj(x)) ,
a. i=1

where 0° := 1 the usual convention. Then each S E S~(Q) may be expressed
in the form

S(x) = L c"B,,(l, Q)
"EAd(Q)

which is caned the spline in B-form with respect to Q. This form of
bivariate splines has been used successfully in [4].

We are now ready to state the following coronary.

COROLLARY 2. For each s(x) E"EAd(Q) c"B,,(l,.o) E S~(.o),

C(d,S)-1 max ICal ~max Is(x)1 ~ max Ic"l.
"'EAd(Q) xeQ ",eAd(Q)

Furthermore, if T = <eO, ..., eS
) is the standard simplex in IR;s, then

aa Pn(X) = n L (CHAZeO - CH A3ej) B,,(A),
Xj !al=n-·l

for x = (Xl' ..., Xs)E T and j= 1, ..., s. Thus,

110
0

Pnjll ~n max ICa+AZeo-c"+Aoejl
xj 00 l"l=n-l

~2n max 1e",1
lotj n

~2nC(n,s) L~nC"B"L
=2nC(n, s) IIPnl1 00

Therefore, we have proved the following theorem.
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THEOREM 4. Let T be the standard simplex. For each j, 1 ,::; j'::; s,

Remark. Obviously, the constant 2nC(n, s) is not the best one and
hence, the inequality in Theorem 4 is not the multivariate analog of the
well-known Markov's inequality.

COROLLARY. For any s-simplex T and for each 1,::; j'::; s,

11

::l II I <° J-l J+ 1 s)_U ( ) vo s _ 1 v, ..., v , v , ..., v II II
::l Pn ,::; 2nC n, s I <OS) Pn 00'
uXJ 00 vo s v, ..., v

Proof Since

k= 1, ..., s,

we may solve for %xJ , j = 1, ..., s, by using Cramer's rule and obtain

o det[(vl-vO), ..., (Vi-l-vO), D, (vJ+l-VO), ..., (VS _yO)]
-;- Pn = d [( 1 0) (S 0)]uXJ et v - v , ..., v - v

where D is a column vector (DOl Pn' ..., Dos Pn)'. After a simple expansion
of the determinant, we obtain

where Pk <(v l _ yO), ..., (vJ- l - yO), (v J+ 1 - yO), ..., (V S
- yO) > denotes the

projection of <(V l - yO), ..., (VJ- l - yO), (VJ+ 1 - yO), ..., (VS
- yO) >onto the

coordinate plane which is perpendicular to the kth axis. Hence,

This completes the proof.
It is already known that

max IPn(xJ - cal,::; K(diam Tf max II 0
2

13 Pn II '
1"1 ~ n 1131 ~ 2 Ox 00
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where x~ (lin) L:~o IX,V', V IIXI =n, and diam T denotes the diameter of T
(cf., e.g., [9J). This estimate is crucial to give an a priori estimate before
applying the B-net subdivision algorithm. We are now able to specify the
K in thc following theorem.

THEOREM 5. For any n, s and polynomial p//(x) = 2:1", n c"B,,(),) E P n ,

C(n, s) 2 1·1 8
2

IImax IPn(x,,) - c,,1 ,,;;: -2- s(E(T)) max ---::::Ii Pn ,
1"1 = n n IPI = 2 uX I 00

where C(n, s) is defined in Theorem 3 and E(T) denotes the longest length of
edges of T, i.e., E(Y) :=maX',j Ilv'-vj I1 2 •

Proof It is known that for any rjJ E IP'I ,

rjJ(x) = I rjJ(x,,) B,,(A).
1"I=n

(Refer to [3,9].) For any function f,

fey) - f(x) = D y_ xf(x) + !D~ xf(x + ~(y - x)),

for some ~ E [0, I J. Thus, we get

L: f(X,,)B,,().)-f(X)=~ L: D;x_xf(x+((x,,--x»B,,(A).
l"l~n l"l=n

Clearly,

Hence,

)f(X)- L: f(X,,)B,,(A)j
l"l~n

";;:2
S I L: ±I(x" x),i2 B"P)I ma~ ,'i'::pfl'll'

1"1=// 1=1 IPI . 00

s 1 $ $ 11 iF 'I=2: L: 2: L: L: cx,(v'-x)jCXk(Vk X)jB,,(It) max 8 pfl
l"l~nn j=1 ',k=O IPI 2 X 00

=3- 1 ± ±(v' x)j(vk-x)j L: Cl:,Cl:kB,,(It) max IIao
2

pJlj
2 j~1 '.k=O 1"1 // IPI 2,1 x 11=

640/67/13
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{
n(n - 1) 2i 2b i #- k

I IX/Y·k B ,,(2)= (-1) 12+ 1. z'=k,
1"1 ~n n n Al nAp

If(x) - I,,~n f(x,,) B,,(2) I

s [n - 1 S ( S . )( S k )
~2 -n-j~l i~O 2Jv

l

-x)j k~O 2k (v -x)j

+! ±±2i (V
i
-X)J] max II aa

2

fJ f li
nj~l i=O IfJl=2 X 00

=.!...-I ±2 i v
i
'V

i _X.xl max II aa
2

fJ f li
2n i~O IfJl ~2 x 00

~.!...-max I±2 i (V
i
-X)'(V

i
-X)! max Ilaa

2

fJ f li
2n XET i~O IfJl~2 X 00

~ 2
s

E(T)2 max II aa
2

fJ f II .
n IfJl=2 x 00

Therefore, by Theorem 3

IPn(xJ - c,,1 ~ C(n, s) 111,,~n (Pn(x,,) - cJ B" II 00

= C(n, s) II I Pn(xJ B" - Pn II
1"1 ~n 00

~ C(n, s) 2
s

E(T)2 max II aa
2

fJ Pn IIn IfJl=2 x 00

The proof is complete.
Next, we would like to know how fast the B-nets arising from successive

degree raising approximate the polynomial surface. Recall that for any
polynomial Pn in B-form, it can be rewritten as a polynomial of higher
degree, i.e.,

pAx) = I c"B,,(2) = I R'c"B,,(2),
1"1 =n 1"1 =n+'

where

(Cf. [3,9,12].)
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It was proved in [10] and in many other papers that
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max IPn(x,,) - Rlc"i -+ 0,
1"1 ~n+1

Here, we prove the following theorem.

1-+ 00.

THEOREM 6. Let T be the standard simplex in IRs. For any Pn E lPn, for
I sufficiently large,

Proof Define the operator Bk on IPn by

BkPn(x)= L Pn(x~)B~(},),
I~I =k

VPn E IP no

By Lemma 1, we know that Bk Pn s.;;; lPn, when k?o n. As shown in the proof
of Theorem 5,

IIBkPn- Pnllro ~2sk max II :21' pJI
IPI=2 uX 100

2sn
2
C(n, S)2 II II

~ k Pn 00

by using Theorem 4.
When k is large enough,

2sn2C(n, s )2
IIBk Pn - Pnll 00 ~ k IIPnl1 ro < IIPnl1 00'

Thus, Bk is invertible on IP n and hence,

max IRlc~ - Pn(xoJI
1"'1=,,+1

max I(B;':lPn)(xJ - Pn(x",)1
1"'1 ~n+l

~ IIB;':IPn - Pnll 00 ~ IIB;':l III ro IIPnl1 ro
II [I+ (Bn+I-I)r 1 -III ro IIPnlloo

IIBn+l-Ilioo 1 2sn2C(n, S)2

~ l-IIBn+I-Iliro IIPnlloo ~ (n + I) 1-2sn2C(n, s)2/(n + I) IIPnlloo'

This completes the proof.
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COROLLARY. If T is an arbitrary s-simplex in IRS, then for any Pn E iPn'

1 I 2sn2C(n,s)2h(T)2
max IPn(x~)-Rc~I~-+/1 2 2C( )2/( +/)/(T)2IPnll""1'1 ~,,+ 1 n - sn n, s n 1

where

{V I <u i I i+ 1 S>}h( T) = E( T) max 0 S -I V, ..., v , v. , ..., v .
U",i",s Vol,<vo, ..., v·'>

Alternatively, we may use these dual linear functionals to give the
following estimate in terms of the B-coefficients of Pn(x), This avoids using
the (unknown) multivariate version of well-known Markov's inequality
and the multivariate version of Bernstein polynomial convergence theorem.

THEOREM 7. For any P" E P n with B-coefficients {cp} IIII ~,,, for
lal =n+l,

I n(n-l) ,n.
IPn(x~)-Rc~l~ n+1 (1+25) II{cldIPI~nlx

+ 0(__1_) as 1-+ +00.
(n + 1)2 '

Proof Let Co be a mapping defined by

We first expand p,,(x,) at VO to obtain

i' ~ CQ:X
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Then we use the dual functional fonnula to get

s

= PI1(VO)+ I: ,DiOP,,(vO)
i= 1 11 +

.,;;, " 1 (cooc)! (n+/-j)! n! if'
+j!:'2/vt j y!(coCl-y)1 (n+l)! (n-j)l iJc(n-j)eo.

l'~C(}~

Thus,

Since

35

(n +/- j)1

(n + I)l

(n + 1- j)! (co~)l

(n+/)! (co~-r)!

Also, since

1 1

(n+wn~:.; (l-k/(n+l))

1 j-l' k (1))
=(n+l)jLI

1
(1+ n +1+O (n+l)2

1 ( j-1 k (1))= 1+ L +0 ---(n+ k=ln+/ (n+l)2

= T;-~ 1);+ (J-; III r;;+~);+ 1+ 0 Cn+ ~)j+2}
_1_ (coo:)!

(n +W(cQC( - y)l

j(j-l) 1 (coa)! 0/ 1 )
+ 2 (n+/)j+1 (coct-y)!+ \(11+1)2'
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Thus,

MING-JUN LAI

(co()()! s ( 1) ( Y--l)(co()()Y IT 1-- ... 1__'_
(co()(-y)! i~l ()(i ()(i

=(CO()()Y(I-
i
t :~~ ~+ ...)

= (co()()Y - ±Yi(Y~-1) (co()()y-ei + O«n +W- 2 ),

i= 1

(COa)Y (n+l-j)! (cOa)!

(n+W- (n+l)! (COa-y)!

(COa)Y [(Coa)Y j(j-1) (COa)Y
=(n+W- (n+W+ 2 (n+l)i+ 1

_±Yi(Yi-l) (coa)Y~e'+0(_1_)J.
i~l 2 (n+l)1 (n+I)2

I
(coct)Y (n+/-j)! (coa)! I
(n+W- (n+l)! (coa-y)!

~ Yi(Yi-1) 1 j(j-l) 1 (1)
~L. + +0--

i~l 2 n+/ 2 n+/ (n+W

1 (j 2 - j j(j - 1») 0( 1 ):s:::- --+ +--
-...::. n + / 2 2 (n + /)2

j(j-1) (1)
= n+/ +0 (n+l)2 .
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